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Some fundamental aspects of bond polarity embedded in diatomic molecular 
orbitals are studied from the viewpoint of the electron distribution in momen- 
tum space. Electron momentum density is expressible as a product of one- 
center and oscillation terms, and the effect of polarity appears mainly in the 
latter term. Since the oscillation is not spherically symmetrical, the bond 
polarity is then related to the anisotropy of momentum distribution. In order 
to investigate this relation, directional ratios of momentum moments are 
introduced and their behaviors are examined for a model heteronuclear 
diatomic system. 

Key words: Bond polarity - -  Electron momentum distribution - -  Directional 
moment of momentum 

1. Introduction 

Momentum and position spaces are complementary each other and wave func- 
tions in both spaces are related through the Dirac-Fourier transformation. The 
problem of electron momentum distribution in molecules was first studied by 
Coulson and Duncanson in the early 1940% [ 1 ]. Succeedingly, a number of studies 
have been carried out on the molecular momentum distribution because of its 
importance as a fundamental physical quantity and its close connection to the 
experimental Compton profile (see e.g.  Refs. [2-4] for reviews). 

We have recently examined the momentum redistribution in diatomic systems 
focussing upon the problem of chemical bonding in momentum space [5-8]. We 
have first showed that the reorganization of momentum density during the process 
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of an interatomic interaction can be exactly related to the total energy of that 
system [5]. The results have been applied to the H f  system and the differences 
between o- and ~r and bonding and antibonding states have been quantitatively 
discussed based on the momentum distribution [6, 7]. The roles of the floating 
and polarization functions have also been analyzed in momentum space, which 
are often used to improve wave functions [8]. However, these studies have been 
limited to homonuclear  systems. 

Here we take up heteronuclear diatomics and discuss some basic features of 
bond polarity in momentum space. The molecules N2 and HF, for example, are 
known to be typical covalent- and ionic-bonded systems, respectively. In position 
space, it is a measure of polarity whether the electron density casts its major 
portion into the internuclear bond region or into one of the atomic regions [9]. 
Henneker and Cade [10] examined momentum densities of the above two 
molecules in comparison with their position-space counterparts, but they could 
not draw out definite conclusions about the bond polarity in momentum space. 
Indeed, in momentum space we are unable to observe the location of the electron 
density relative to the nuclear positions. However, the momentum wave function 
and resulting momentum density should contain information about the polarity, 
since the Dirac-Fourier  transformation brings all the information to momentum 
space. 

In the present paper we show that the molecular .momentum distribution is 
characterized by its oscillation and resultant anisotropy and their magnitudes are 
intimately related to the bond polarity. The oscillatory and anisotropic nature is 
maximal for the complete covalent bond and decreases as the polarity increases. 
In the next section, we discuss the oscillatory behavior of  the momentum density. 
The oscillation appearing in diatomic molecular orbitals are analyzed in terms 
of its period, phase, and amplitude. In the third section, we discuss the anisotropy 
of diatomic momentum distribution in relation to the bond polarity. Directional 
ratios of  nth momentum moments (1 -< n -< 4) are introduced as measures of the 
anisotropy, and their behaviors are examined for the model heteronuclear 
diatomic system employed by Feinberg and Ruedenberg [11]. The result for the 
second moment  is of our particular interest, since it is directly related to the 
kinetic energy of the system. Atomic units are used throughout this paper. 

2. Bond polarity and oscillatory momentum distribution 

In its simplest form, a diatomic molecular orbital can be written in position space 
as  

~p(r) = (1 + Az+ 2AS)-a/2[tpa(r - Ra) + h~bb (r  - Rb)], ( la)  

where Ra and Rb are the position vectors of  two nuclei a and b, q , , ( r - R a )  and 
~bb(r-Rb) the atomic orbitals centered on them respectively, and S the overlap 
integral. The parameter A represents the relative contributions of q,~ and ~bb. The 
Dirac-Fourier  transformation gives the momentum representation of Eq. (la) as 

X ( p ) = ( l + A 2 + 2 A S ) - l / 2 [ e x p ( - i p R . ) x a ( p ) + A  exp (--ipRb)Xb(P)], (lb) 
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where Xa(P) and Xb(P) are momentum-space atomic orbitals corresponding to 
O~(r) and Oh(r), respectively. Then the momentum density becomes a sum of 
one- and two-center terms; 

p(p) = (1 + A 2 + 2AS)-'{IX~(p)I2+ hzlXb(P)[ = 

+ 2A IX,(P)[ IXb(P)[ COS [pR + arg [X~(P)/X~(P)]]}, (2a) 

where R = Rb -- R~ is the internuclear vector. The third term in the braces of Eq. 
(2a) is intrinsic to molecular systems. In order to know the relative magnitude 
of the contribution of this term, it is more convenient to express Eq. (2a) as a 
product of  one-center and oscillation terms. That is, 

P(P)=Po~(P)Po~(P), 

Po,,e(P) : (1 + A z + 2AS)-'[[X~(p)12 + A zlXb(P)[2], 

Po~c(P) = 1 + a(p)  cos {pR + arg [X,(P)/Xb(P)]}, 

a(p)  = 2AlX~(p) I Ixb(p)l/[Ixo(p)12 + 

(2b) 

(2c) 

(2d) 

(2e) 

The molecular momentum density is essentially different from the atomic momen- 
tum density in that the former has a oscillation term. The mode of oscillation is 
characterized by its period, phase, and amplitude. 

2.1. Period 

We take the p~ axis parallel to the internuclear axis. Then pR = pzR (where 
R = IR]), and hence the cosine term in Eq. (2d) oscillates with the period 27r/R 
along the pz axis [1], if arg [Xa(P)/Xb(P)] is constant. The period is inversely 
proportional  to the bond length R ; a molecule with shorter (longer) bond length 
has longer (shorter) period. Though this suggests the possibility of estimating 
the bond length from the period of momentum distribution [3], the result of  
detailed analysis by Kaijser and Smith [12] is not encouraging. 

2.2. Phase 

The arg [X~(P)/Xb(P)] is the phase of  oscillation and its extent is determined by 
a combination of two atomic orbitals. I f  the spherical harmonic atomic orbital 
is used, the orbital can be written [13] in momentum space as 

X.~m(P) -- (-i) 'S, ,(p)O,m( O~)~ (  Cov) , 

and so the phase is 

=~-(~r /2) ( l~- lb ) ,  if sat~sb~)b>O, 
arg [Xo(P)/Xb(P)] [.--(zr/2)(l.  -- lb) + zr, if SO@asb~) b < 0, (3) 

since atomic orbitals with different m's do not form a molecular orbital from the 
symmetry condition. Namely  the phase is determined by the difference between 
azimuthal quantum numbers of two atomic orbitals. In momentum space, the 
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density distribution shifts by -(~/2)(1,~ - lb)/R to the positive Pz direction. Since 
l o  - lb generally dominates the energy difference between the two atomic orbitals 
when na =nb, the phase is expected to have a correlation with that energy 
difference. 

2.3. Amplitude 

In the oscillation term, the parameter  A which determines the extent of  mixing 
of  two atomic orbitals appears  explicitly in the amplitude part  A(p). From Eq. 
(2e), we have 

(1 - [IXal-h [Xb[]2/[[X,~[2+ h 21Xb[ 2] --< 1, (4a) 

A(p) = ~(-1 + [[Xa[ + A Ix l]=/rlxo I=+ =Ix, I - L  (4b) 

The ampli tude ]A(p) I is generally a function of p and is large (small) when p 
diminishes (augments) the second terms of Eqs. (4a, b). When A = • 
A(p) takes its extremum values :el. Since h is a constant whereas [Xa[/[Xbl is a 
function of  p, this condition is satisfied if g~ ---Xb, i.e., a complete covalent bond. 
In this case, h = +1 and the momentum distribution has nodal planes 

p~=(2n+l)Tr/R,  forA = 1, 

p~ = 2nTr/R, for h = - 1 ,  

where n is an integer. When Xa ~ Xb, it is possible that h = • for some 
values of  p, but at the same time cos [pzR + arg (XJXb)] will not be :7 1 for such 
values of  p. So the oscillation term does not vanish. Namely, if there is some 
polarity, nodes from the oscillation term do not appear  in the momentum 
distribution. 

In order to obtain an approximate  magnitude of  A(p),  we may take the expectation 
value of A(p) over the normalized one-center momentum density []X~[2+ 

A 2lxb 12]/(1 + ,~2); 

f A(p)EIX.I~+A;lXbt ;] dp/(l+z 2) = 2AS,/(1 + A2), (5a) 4 =  

S~ = f lxo(p)llx~(p)l dP <- 1, (5b) 

where Sp is a kind of overlap integral in momentum space, and represents the 
similarity of  two momentum-space  atomic orbitals; for example, it is 1 for the 
same atomic orbitals, 0.507 for ls-2s pair, and 0.424 for ls-2p~r pair, if Slater 
type orbitals with the same exponents are used. Since the similarity between two 
atomic orbitals is also reflected in A, fi~ is eventually governed by the polarity. 
For Xa=/~b (complete covalent bond),  all of  [2A/(I+A2)I, Sp, and [fi,[ take 
maximum value 1. As the polarity increases, the value of ]4] decreases from 1 
and the oscillation o f p ( p )  diminishes. Figure 1 shows several momentum distribu- 
tions for the bonding state of  the model one-electron heteronuclear system used 
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Fig. 1. Contour maps of electron momentum density for the 1 str bonding state of the model one-electron 
heteronuclear system. Contour values are 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001 from 
the innermost contour. The Pz and Px axes are taken as the horizontal and vertical axes, respectively. 
Square region containing each contour map is IPzl-<4 and Ipxl-<4. Refer to Sects. 2.3. and 3.2. for 
the meaning of parameters 

by  Fe inberg  and  Ruedenbe rg  [11]. (Nuc lea r  charges  Za and  Zb are f rac t iona l  
and  Z ,  + Zb  = 2, e = ( Z a  - Z h ) / 2  (>-0). See Sect. 3.2. for  de ta i l ed  descr ip t ion . )  In  
the H2 sys tem (e = 0, h = f t .= 1), the osc i l la t ion  is largest  and  nodes  f rom the 
osc i l la t ion  are  c lear ly  o b s e r v e d  As R increases  or  as e increases ,  bo th  h and  fi, 
decrease .  Af ter  all,  the augmen ta t ion  o f  po la r i ty  ( ionic  charac ter )  results  in the  
d iminu t i on  of  osc i l la tory  behav io r  o f  m o m e n t u m  densi ty .  
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3. Bond polarity and anisotropic momentum distribution 

3.1. A measure of anisotropy 

Since the oscillation part cos[pzR+arg(xa/Xb)] depends explicitly on the z 
component  of  momentum vector p, the oscillation of  momentum distribution is 
not spherically symmetrical. Consequently, the molecular momentum distribution 
p(p) has an anisotropy. Since the oscillation arises along the internuclear axis, 
we can use ratios Qn of nth directional moments of  momenta (1 -< n -< 4) that are 
parallel and perpendicular to the bond axis; 

Q. =([pzl")/([px]"). 

(,p.l")= I lp.]"p(p) ap= 2 IoP';Jz(pz) dp... 

I <lp~l"> = px[~ dp= 2 p~J~(p~) dp~, 
0 

(6a) 

(6b) 

(6c) 

where Jz(P~) and Jx(Px) are directional Compton profiles [2-4]. Q1 represents 
the directional ratio of  electron velocity. Q2 affords the anisotropy of the kinetic 
energy, since the sum of  second moments along the three axes is just twice the 
kinetic energy. Generally, Q, is positive, is unity for spherically symmetrical 
distributions, and deviates from unity as the anisotropy increases. As a result, 
larger polarity corresponds to smaller deviation of Qn from the value unity. On 
the other hand, Matcha et al. [14] have proposed AJ(O)=Jz(O)-Jx(O) ,  the 
difference between the directional Compton profiles at zero momentum, as a 
measure of the anisotropy. In the following, we analyze the anisotropy of  momen- 
tum distribution for the model one-electron diatomic system using Q, in com- 
parison with A J(0). 

3.2. Analysis of Model One-Electron System 

The model employed here is the one-electron heteronuclear diatomic molecule 
with non-integral nuclear charges introduced by Feinberg and Ruedenberg [11]. 
Namely, the sum of the nuclear charges is restricted to 2 and e is defined as 
(Z~--Zb)/2 (-->0). Slater type ls~ and 1S b orbitals have been considered and 
their exponents and h have been determined variationally as a function of e 
and R. 

Results for Qn are given in Fig. 2a-d. The behaviors of Q~ (1-< n-<4) on the 
variation of  R are similar to one another: In the bonding ls~r state, Q, -< 1 and 
in the united atom (R = 0) and separated atoms (R = oo) limits Q~ becomes unity 
reflecting isotropic momentum distributions. In the so-called molecular region, 
1 -< R ~< 3, Q, takes a minimum value and the anisotropy becomes largest. In the 
energy language, the directional imbalance of  the kinetic energy is maximal in 
this R range. In the bonding state, the increase of e reduces the internuclear 
distance where Qn is the minimum and the well-depth of that minimum. These 
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Fig. 2. Directional ratios of  momentum moments Q. =(]pzln)/(Ip~t"> (1 -< n-<4) versus internuclear 
distance R for the model one-electron system 

Fig. 3. Relations between the directional 
ratio Qz and the difference in Mulliken 
atomic populations Ma - Mb for internu- 
clear distance R -> 2. Each e line is marked 
by �9 at the half integer values of R starting 
from 2 (bottom) and ending at 10 (top) 
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Fig. 4. Difference in the directional 
Compton profiles at zero momentum 
-A J(0)= -(Jz (0)- Jx(0)) versus internu- 
clear distance R. 

correspond to the fact that as the difference in nuclear charges increases, the 
electron distribution is more strongly bound by one nucleus and hence the covalent 
character decreases. As an example, Fig. 3 shows the relation of 02 to the 
difference in Mulliken atomic populations, Ma - Mb, for the bonding state. It is 
seen that the unbalanced electron distribution and the anisotropy in momentum 
density are well correlated. For the antibonding 2po- state, Qn -> 1 and increases 
monotonical ly as R decreases. The increase in e again reduces the anisotropy 
of momentum distribution in the antibonding state. As n becomes larger, the 
distance R where Qn begins to deviate from 1 becomes smaller. Since higher 
order moments  emphasize the contribution from large momentum region, this 
represents that the anisotropy of momentum distribution is small in the high 
momentum region and that the anisotropy due to bond polarity occurs mainly 
in the low momentum region. Since the variation of Qn against the nuclear charge 
difference becomes small as n increases, Q~ or Q2 is a more suitable measure of  
the anisotropy than Q3 or Q4- 

In Fig. 4, the difference between directional Compton  profiles at their zero 
momenta  is plotted against R. The behavior  of  - A  J(0)  is similar to that of  Qn. 
The e dependence of  minimum positions and depths is also similar. Though we 
could not find definite difference between the measures Q, and A J(0),  the present 
measure of  Q, will be better, since Q, refers to the whole momentum distribution 
while A J(0)  examines only one local point. Particularly, Q2 has a merit that the 
oscillation and anisotropy of electron momentum distribution, and hence the 
bond polarity, are closely related to the directional imbalance of the kinetic 
energy. We note that the directional kinetic energy appears  in the directional 
virial theorem [15, 16] derived from the non-uniform scaling. 
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Note added in proof 
Very recently, Ch. V. Rama Rao and A. K. Chandra [Chem. Phys. Lett. 113, 391 (1985)] have used 
the directional kinetic energy for the analysis of the bonding in Hell  +. Through the partial-wave 
analysis of the momentum density, A. M. Simas, V. H. Smith, Jr., and A. J. Thakkar [Int. J. Quantum 
Chem. S 18,385 (1984)] have shown that a quantitative manifestation of the different bonding situations 
in the isoelectronic molecules N2, CO, and BF occurs in the anisotropy of the kinetic energy. 


